Appendix A

Noise and Vibration Impacts by Build Alternative
The maps in this section depict noise impacts by parcel for the project alternatives and design options. Properties presumed to be displaced for the project are not shown as being impacted.
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork.

NOTES:
- One noise impact per parcel unless noted in parentheses.

Source: Data from CH2M HILL (2007), City of Mercer Island (2006), and King County (2009).
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-2-Na
Noise Impacts
Segment B, B2M-C11A
East Link Project
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 6 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009)

Exhibit A-3-Na
Noise Impacts
Segment B, B2M-C9T
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:

- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009)
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 6 to 8 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-5-Nb
Noise Impacts
Segment B, B2A
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
-One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:

• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009)
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 8 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009)
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-9-Nb
Noise Impacts
Segment B, B7
East Link Project
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:

-One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
-One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006).

Exhibit A-12-Nb Noise Impacts Segment C C9T from B2M East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.

Source: Data from City of Bellevue (2005) and King County (2006).
Exhibit A-13-Na Noise Impacts Segment C C9T from B3/B7 East Link Project
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 8 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Exhibit A-14-Na
Noise Impacts
Segment C
C1T
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 8 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
• One noise impact per parcel unless noted in parentheses.

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-15-Na Noise Impacts Segment C C2T from B2A East Link Project
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.

Source: Data from City of Bellevue (2005) and King County (2006).

Exhibit A-15-Nb
Noise Impacts
Segment C
C2T from B2A
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-16-Nb
Noise Impacts
Segment C
C2T from B2E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-17-Na
Noise Impacts
Segment C
C2T from B3/B7
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006).

Exhibit A-17-Nb
Noise Impacts
Segment C
C2T from B3/B7
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).
Exhibit A-18-Na
Noise Impacts
Segment C
C3T from B2A
East Link Project
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006).
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Exhibit A-19-Na
Noise Impacts
Segment C
C3T from B2E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006).

Exhibit A-19-Nb
Noise Impacts
Segment C
C3T from B2E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
-One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.

Source: Data from City of Bellevue (2005) and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
-One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)

Exhibit A-22-Nb
Noise Impacts
Segment C
C4A from B3/B7
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).
Exhibit A-23-Na
Noise Impacts
Segment C
C7E from B2A/B2E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.

Source: Data from City of Bellevue (2005) and King County (2006).
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).
Exhibit A-24-Na
Noise Impacts
Segment C
C7E from B3/B7
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)

Exhibit A-24-Nb
Noise Impacts
Segment C
C7E from B3/B7
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)

Exhibit A-25-Nb
Noise Impacts
Segment C
C8E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006).
Exhibit A-26-Nb
Noise Impacts
Segment C
C9A from B2A
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006).
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006)

Exhibit A-28-Na
Noise Impacts
Segment C
C14E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005) and King County (2006).

Exhibit A-28-Nb
Noise Impacts
Segment C
C14E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses.

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).

Exhibit A-29-Na
Noise Impacts
Segment D, D2A
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• building sound insulation,
• special trackwork

NOTES:
• One noise impact per parcel unless noted in parentheses
Noise impacts would be mitigated through a variety of options, including:
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
• building sound insulation,
• special trackwork

NOTES:
• One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).

Exhibit A-30-Nb
Noise Impacts
Segment D, D2A
Design Option
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
-One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).

Exhibit A-31-Na
Noise Impacts
Segment D, D2E
East Link Project
Noise impacts would be mitigated through a variety of options, including:
• building sound insulation,
• special trackwork

NOTES:
• One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).

Exhibit A-31-Nb Noise Impacts Segment D, D2E East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).
Noise impacts would be mitigated through a variety of options, including:

- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).

Exhibit A-33-Na
Noise Impacts
Segment D, D5
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2009).

Exhibit A-33-Nb
Noise Impacts
Segment D, D5
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Redmond (2005) and King County (2009).
Noise impacts would be mitigated through a variety of options, including:

- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Exhibit A-34-Nb

Noise Impacts

Segment E, Alternative E2

East Link Project

Source: Data from City of Redmond (2005) and King County (2009).
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Redmond (2005) and King County (2009).

Exhibit A-35-Na
Noise Impacts
Segment E,
Alternative E2
Design Option
East Link Project
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Redmond (2005) and King County (2009).
Exhibit A-36-Na
Noise Impacts
Segment E,
Alternative E1
East Link Project

Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
• One noise impact per parcel unless noted in parentheses

Source: Data from City of Redmond (2005) and King County (2009)
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Redmond (2005) and King County (2009).
Exhibit A-37-Na
Noise Impacts
Segment E, Alternative E4
East Link Project

Noise impacts would be mitigated through a variety of options, including:
• sound walls (approximately 4 to 6 feet high),
• building sound insulation,
• special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses

Source: Data from City of Redmond (2005) and King County (2009)

At-Grade Route
- Elevated Route
- Retained-Cut Route
- Retained-Fill Route
- Tunnel Route
- Traction Power Substation
- Proposed Station
- Maintenance Facility and Access Track
- New and/or Expanded Park-and-Ride Lot
- Moderate
- Severe
- Both Moderate and Severe
- No Noise Impact
- Proposed Sound Wall Location

Crossover Location
Gated Crossing
Shared Crossing (No Gates)
Noise impacts would be mitigated through a variety of options, including:
- sound walls (approximately 4 to 6 feet high),
- building sound insulation,
- special trackwork

NOTES:
- One noise impact per parcel unless noted in parentheses
Noise Impacts

Preferred Alternative

D2A

Other Alternatives

D3

- Traction Power Substation
- Proposed Station
- Maintenance Facility and Access Track
- New and/or Expanded Park-and-Ride Lot

Source: Data from City of Bellevue (2005), City of Redmond (2005), and King County (2006).
Vibration

The maps in this section depict vibration and groundborne noise impacts by parcel for the project alternatives and design options. Properties presumed to be displaced for the project are not shown as being impacted.
At-Grade Route
- Elevated Route
- Retained-Cut Route
- Retained-Fill Route
- Tunnel Route

Proposed Station
- Traction Power Substation
- Crossover Location
- Gated Crossing

Potential for Vibration Impacts (Impacts can be Mitigated)

Source: Data from City of Seattle (2002), King County (2009), and Sound Transit (2007).

Exhibit A-1-Va
Vibration Impacts
Segment A,
Alternative A1
East Link Project
Mercer Is. United Methodist Church Park & Ride

Mercer Island Park & Ride

UPPER LUTHER BURBANK PARK

PARK ON THE LID

Source: Data from City of Seattle (2002), King County (2009), and Sound Transit (2007)

Exhibit A-1-Vb
Vibration Impacts
Segment A, Alternative A1
East Link Project
Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-2-Va
Vibration Impacts
Segment B, B2M
East Link Project
Exhibit A-2-Vb
Vibration Impacts Segment B, B2M
East Link Project

Potential for Vibration Impacts (Impacts can be Mitigated)
Potential for Groundborne Noise Impacts (Impacts can be Mitigated)

Source: Data from City of Bellevue (2005) and King County (2009)
Potential for Vibration Impacts (Impacts can be Mitigated)

Exhibit A-3-Vb
Vibration Impacts
Segment B, B1
East Link Project
Potential for Vibration Impacts after Mitigation
Potential for Vibration Impacts (Impacts can be Mitigated)

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-4-Va
Vibration Impacts
Segment C
C11A
East Link Project
Potential for Vibration Impacts after Mitigation
Potential for Vibration Impacts (Impacts can be Mitigated)

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-4-Vb
Vibration Impacts
Segment C
C11A
East Link Project
Potential for Groundborne Noise Impacts (Impacts can be Mitigated)
Potential for Groundborne Noise Impacts (Impacts can be Mitigated)

Source: Data from City of Bellevue (2005) and King County (2009).

Exhibit A-8-Va
Vibration Impacts
Segment C
C3T
East Link Project
Potential for Groundborne Noise Impacts (Impacts can be Mitigated)
Exhibit A-12-Va
Vibration Impacts
Segment C
C14E
East Link Project

Source: Data from City of Bellevue (2005) and King County (2006)

Potential for Vibration Impacts after Mitigation
Potential for Vibration Impacts (Impacts can be Mitigated)

Segment C

From B3-114th Design Option or B7

From B3

0.125 Mile

0.125 Mile

Wilburton Park & Ride

Segment B

At-Grade Route
Elevated Route
Retained-Cut Route
Retained-Fill Route
Tunnel Route
Proposed Station

New and/or Expanded
Park-and-Ride Lot

Traction Power Substation

Crossover Location
Gated Crossing
Shared Crossing (No Gates)
Exhibit A-12-Vb
Vibration Impacts
Segment C
C14E
East Link Project
Potential for Vibration Impacts (Impacts can be Mitigated)

Source: Data from City of Redmond (2005) and King County (2009).
Vibration Impacts
Segment E,
Alternative E2
East Link Project
Potential for Vibration Impacts (Impacts can be Mitigated)
Potential for Vibration Impacts after Mitigation
Potential for Vibration Impacts (Impacts can be Mitigated)
NOTES:
1) This map does not indicate whether affected properties are a full or partial property acquisition.
2) Conceptual right-of-way includes existing public right-of-way, project right-of-way and other areas planned for the project such as stations and park-and-rides. Area does not include staging areas.
Potential for Vibration Impacts (Impacts can be Mitigated)

Source: Data from City of Redmond (2005) and King County (2009).

Exhibit A-16-Va
Vibration Impacts
Segment E,
Alternative E4
East Link Project
NOTES:
1) This map does not indicate whether affected properties are a full or partial property acquisition.
2) Conceptual right-of-way includes existing public right-of-way, project right-of-way and other areas planned for the project such as stations and park-and-rides. Area does not include staging areas.